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Abstract

Robust perception relies on both bottom-up and
top-down signals. Bottom-up signals consist
of what’s directly observed through sensation.
Top-down signals consist of beliefs and expec-
tations based on past experience and the current
reportable short-term memory, such as how the
phrase ‘peanut butter and ...” will be completed.
The optimal combination of bottom-up and top-
down information remains an open question, but
the manner of combination must be dynamic and
both context and task dependent. To effectively
utilize the wealth of potential top-down informa-
tion available, and to prevent the cacophony of
intermixed signals in a bidirectional architecture,
mechanisms are needed to restrict information
flow. We explore deep recurrent neural net archi-
tectures in which bottom-up and top-down sig-
nals are dynamically combined using attention.
Modularity of the architecture further restricts
the sharing and communication of information.
Together, attention and modularity direct informa-
tion flow, which leads to reliable performance im-
provements in perceptual and language tasks, and
in particular improves robustness to distractions
and noisy data. We demonstrate on a variety of
benchmarks in language modeling, sequential im-
age classification, video prediction and reinforce-
ment learning that the bidirectional information
flow can improve results over strong baselines.

1. Introduction

Deep learning emerged from the goal of learning representa-
tional hierarchies, with the higher levels corresponding to ab-
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stract features used for decision-making (Hinton et al., 2006;
Bengio et al., 2007; Salakhutdinov & Hinton, 2009). Hierar-
chical models are often taken to imply that computation pro-
ceeds in a feedforward or bottom up fashion, i.e., stage-wise
information processing in which low-level (sensory) rep-
resentations construct or modulate high level (conceptual)
representations. However, they could equally well support
the flow of information in a feedback or fop down fashion,
i.e., information processing in which high-level representa-
tions modulate lower-level representations. Neuroscientists
have noted that reciprocity of connectivity among anatom-
ically distinct areas of neocortex is common (Felleman &
Van Essen, 1991; Rockland, 2015), causing early visual ar-
eas to be modulated by later stages of processing (Bastos
et al., 2015). The same is true for other sensory modali-
ties as well (Manita et al., 2015). Neuroimaging research
has found evidence for distinct bidirectional activity flows
with functional consequences (Dijkstra et al., 2017; Nielsen
et al., 1999), and neurophysiological and neuroanatomical
studies indicate the important role of top-down information
for guiding processing resources to behaviorally relevant
events (Baluch & Itti, 2011; Gilbert, 2013). The Global
Workspace theory (Baars, 1997; Dehaene et al., 2017) posits
that top-down signals are necessary to broadcast informa-
tion throughout neocortex, which enables conscious states
and verbal behavior. Nonetheless, the neural mechanisms of
interaction between bottom-up and top-down pathways are
still poorly understood. One goal of our research is to con-
duct machine-learning experiments to explore the value of
top-down mechanisms for learning, achieving robustness to
distributional shifts, and guiding the development of novel
and improved neural architectures.

In the cognitive science community, the relative contribu-
tions of bottom-up and top-down signals has been an ongo-
ing subject of debate for over 40 years (Kinchla & Wolfe,
1979; Rauss & Pourtois, 2013). The McClelland & Rumel-
hart (1981) model of printed-word reading consisted of a
hierarchy of detectors, from letter fragments to letters to
words, with bidirectional connectivity. The top-down con-
nectivity imposed orthographic constraints of the vocabulary
and helped to explain human proficiency in reading. The
model also accounted for puzzling behavioral phenomena,
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Figure 1. Overall layout of the proposed Bidirectional Recurrent Independent Mechanisms (BRIMs) model. Information is passed forward
in time using recurrent connections and information passed between layers using attention. Modules attend to both the lower layer on the
current time step as well as the higher layer on the previous time step, along with null, which refers to a vector of zeros.

such as the fact that it is easier for people to perceive a
letter embedded in a word—such as the A in READ—than
the same letter presented in isolation. In the model, partial
activation from representations of the word READ provide
top-down support for the activation of the letter A in the
context of the word, but not of the isolated A.

If top-down pathways provide expectations, they can be
considered as priors on subsequent inputs, and uncertainty
plays a key role in how information is combined from
bottom-up and top-down sources (Weiss et al., 2002; Ker-
sten et al., 2004). For instance, if one enters a familiar but
dark room, one’s expectations will guide perception and
behavior, whereas expectations are less relevant in the light
of day. Even without prior expectations, top-down path-
ways can leverage simultaneous contextual information to
resolve local uncertainty, e.g., the interpretation of the mid-
dle letters of these two words: TRE CAT. Thus, top-down
processing leverages goals, temporal and concurrent context,
and expectations (conscious or otherwise) to steer or focus
the interpretation of sensory signals. Top-down processing
helps to overcome intrinsically noisy or ambiguous sensory
data, whereas bottom-up processing allows an agent to be
reactive to unexpected or surprising stimuli.

Information Flow in Deep Neural Networks. Models
having within-layer recurrence are common (e.g., LSTM
layers), but such recurrence involves a particular level of
representation interacting with itself, as opposed to the strict
top-down notion of higher levels acting on lower levels.
In contrast, a layered architecture with feedforward and
feedback connections makes a structural distinction between
higher and lower levels of representations, and it requires

combination of information from two distinct sources.

Bidirectional layered models have long existed (Dayan et al.,
1995; Larochelle & Bengio, 2008; Salakhutdinov & Hinton,
2009), but these models have not received the same intense
scrutiny and development as feedforward models. The goal
of this paper is to revisit bidirectional layered models with
the aim of raising them to state-of-the-art in performance.
Simply taking existing models and incorporating bidirec-
tional connectivity introduces challenges (Iuzzolino et al.,
2019). Instead, we explore the notion that bidirectional
information flow must be coupled with additional mecha-
nisms to effectively select from potential top-down signals,
modulate bottom-up signals and prevent a cacophony of
intermixed signals. We propose two specific mechanisms
from the deep learning toolkit to dynamically route infor-
mation flow: modularity and attention. With these two
mechanisms, we outperform state-of-the-art feedforward
models on challenging vision and language tasks.

Dynamic Information Flow using Attention. Goyal
et al. (2019) offer evidence that modularity, coupled with
a flexible means of communication between modules, can
dramatically improve generalization performance. They
describe a recurrent independent mechanisms (RIMs) ar-
chitecture that dynamically controls information flow in a
modular RNN. The recurrently connected modules compete
for external input and communicate sets objects (associated
with a key and value) sparingly via differentiable attention
mechanisms driven by the match between keys (from a
source module) and queries (from a destination module).
Computation is sparse and modular, meaning that only a
subset of the neural modules are active at any time. Compo-
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sition of computations is dynamic and plug-and-play rather
than static, in the sense that the attention mechanism uses
context to select the subset of modules that are activated
and what is communicated to which module. The moti-
vating intuition behind this increased flexibility is that if
the relationship between modules changes between training
and evaluation, a model which keeps the information in
these modules sufficiently separate should still be able to
correctly recombine information, even though the overall
data distribution differs from what was seen during training.

Link to Global Workspace Theory. The conscious-
ness prior (Bengio, 2017) attempts to provide a machine
learning motivation for the Global Workspace Theory or
GWT (Baars, 1997; Dehaene et al., 2017). This prior states
that high-level variables have a joint distribution which can
be captured by a sparse factor graph, with the same parame-
terized computations (factors, in the factor graph nomencla-
ture) being applicable (like rules) to many possible instances
of high-level random variables. Inference in this sparse fac-
tor graph would naturally be performed by considering only
a few elements at the time, which would correspond to the
current conscious content. The GWT proposes that this
high-level conscious content is broadcast across the brain
via top-down connections forming an active circuit with the
bottom-up connections. What has been missing from RIMs
and which we propose to study here is therefore a notion
of hierarchy of levels enabling this kind of bidirectional
information flow mediated by attention.

Combining Top-Down and Bottom-Up Information
with Attention over Modules. We now present our cen-
tral proposal, which is that top-down and bottom-up signals
should be combined explicitly and selectively by using atten-
tion. On a given time step, only a fraction of the high-level
concepts being detected are likely to be relevant for a partic-
ular stimulus. For example, if a person is trying to classify
an object in a dark room (which they are familiar with), the
most relevant top-down signal is the person’s prior knowl-
edge of what that object looks like, as opposed to other
knowledge about the room. This motivates breaking up the
hidden state into multiple modules, such that the top-down
and bottom-up interactions can be appropriately focused.
Thus we consider the use of modules at multiple levels
of abstraction to be a key ingredient for our method. We
elect to build upon the Recurrent Independent Mechanisms
(RIMs) framework for the modular building blocks, as their
end-to-end training demonstrated successful specialization
between modules (Goyal et al., 2019). However, while
network modularity revealed considerable computational
advantages, the modules in the RIMs architecture are fully
interconnected and thus there is no notion of layered or
hierarchical structure.

To address this issue, we propose a new architecture, which
we call Bidirectional Recurrent Independent Mechanisms

(BRIMs). This new approach endows the attention-based,
modular structure with a hierarchy of layers composed of
competing modules, yielding organized contextual compu-
tations during training. The rationale is to provide an archi-
tectural backbone such that each layer of the hierarchy can
send information in both a bottom-up direction as well as in
a top-down direction. We find that this inductive bias, com-
bined with the modularity mechanisms developed in Goyal
et al. (2019), provides considerable and further advantages
for tasks where there is a change of input distribution from
training to testing.

2. Preliminaries

Multi-layer Stacked Recurrent Networks. The most
common multi-layer RNN architecture is bottom-up and
feed-forward, in the sense that higher layers are supplied
with the states of the lower layers as inputs. An L-layer
deep RNN is then concisely summarized as:

y, = D(h{) (1)
h; = F'(h;"" h}_,) )
h) = E(x;) 3)

with [ = 0,1,...,L. For a given time ¢, y, denotes the
model prediction, X; the input and hi the hidden state of the
model at layer [. D and E denote the Decoder and Encoder
for the model. F' represents the recurrent dynamics at the
hierarchy level [ (e.g., an LSTM or GRU).

Key-Value Attention. Key-value Attention (also some-
times called Scaled Dot Product attention), defines the back-
bone of updates to the hidden states in the proposed model.
This form of attention is widely used in self-attention mod-
els and performs well on a wide array of tasks (Vaswani
et al., 2017; Santoro et al., 2018). Given a set of queries Q,
keys K and values V, an attention score A g and an attention
modulated result Az are computed as

T
As (Q,K) = Softmax (%) 4)

Ar (Q K, V)=AgV S

Recurrent Independent Mechanisms. RIMs (Goyal
et al., 2019) consist of a single layered recurrent structure
where the hidden state h; is decomposed into n modules,
h, ;. for k = 1,...n. It also has the property that on a given
time step, only a subset of modules is activated. In RIMs,
the updates for the hidden state follow a three-step process.
First, a subset of modules is selectively activated based on
their determination of the relevance of their input. Second,
the activated modules independently process the informa-
tion made available to them. Third, the active modules
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gather contextual information from all the other modules
and consolidate this information in their hidden state.

Selective Activation. Each module creates queries
(:) = Q,;, (hy—1 ) which are then combined with the keys
K = Kip, (9,x;) and values V = V;,,,, (@, x;) obtained
from the input x; and zero vectors € to get both the atten-
tion score and attention modulated input as per equations
(4) and (5). Based on this attention score, a fixed number of
modules m are activated for which the input information is
most relevant (where the null module, which provides no
additional information, has low attention score). We refer
to this activated set per time-step as S;.

Independent Dynamics. Given the attention modulated
input obtained above, each activated module then undergoes
an update in its hidden state:

keS;

o Fi [Ar (Q,K ‘_’) h;_q 1]
{ res ©

F, here stands for any update procedure, ex. GRU or LSTM.

Communication. After an independent update step, each
module then consolidates information from all the other
modules. RIMs again utilizes the attention mechanism to
perform this consolidation. Active modules create queries
Q= Qcom(ht ) which act with the keys K = Keom(hy)
and values V = V,,, (h;) generated by all modules and the
result of attention appends the state for that time step:

)

h htk+AR(07K7V) keSt
YT by k¢S,

3. Proposed Method

Our contribution is to extend RIMs to a multilayered bidirec-
tional architecture, which we refer to as BRIMs. Each layer
is a modified version of the RIMs architecture (Goyal et al.,
2019). A concise representation of our architecture is de-
picted in Figure 1. We now describe the dynamic bottom-up
and top-down flow of information in BRIMs.

3.1. Composition of Modules

We use the procedure provided in RIMs to decompose the
hidden state hf5 on each layer [ and time ¢ into separate
modules. Thus, instead of representing the state as just a
fixed dimensional vector ht, we choose to represent it as
{(hi Wil , Sh} where n; denotes the number of modules
in layer [ and S} is the set of modules that are active at
time ¢ in layer [. |S!| = m;, where m; is a hyperparameter
specifying the number of modules active in layer [ at any
time. Each layer can potentially have different number of

modules active. Typically, setting m; to be roughly half the
value of n; works well.

3.2. Communication Between Layers

We dynamically establish communication links between
multiple layers using key-value attention, in a way which dif-
fers radically from RIMs (Goyal et al., 2019). While many
RNNSs build a strictly bottom-up multi-layer dependency us-
ing (2), we instead build multl layer dependency by consid-
ering queries Q = Quuy ( ¢.5) from modules and keys K=
Koy (@,hL71 hiT1) and values V = Vi, (@,hi "1 hit)
from all the modules in the lower and higher layer (blue and
red arrows respectively; Figure 1). Note that in the deepest
layer, only the lower layer is used and on the first layer,
the input’s embedded state serves as the lower layer. Also
note that the attention receiving information from the higher
layer looks at the previous time step, whereas the attention
receiving information from lower layer (or input) looks at
the current time step.

Based on the attention score Ag, the set Sé is constructed
which comprises modules for which null information is
least relevant. Every activated module gets its own sepa-
rate version of input (as its dependent on its query, which
is a function of the hidden state of the module) which is
obtained through the attention mechanism. Concretely, for
each activated module, this can be represented as:

h;, = F} [Ar(Q.K, V),

hixl kes,  ®

where F,i denotes the recurrent update procedure.

3.3. Communication Within Layers

We also perform communication between the different mod-
ules within each layer (green arrows; Figure 1). In order to
enable this communication, we again make use of key-value
attention. This communication between modules within
a layer allows them to share information, albeit in a lim-
ited way through the bottleneck of attention. We create

queries Q = Q,,,, (h ‘. k) from active modules and keys

K = Koo (fl ) and values V = Veom (ht) from all the
modules to get the final update to the module state as fol-
lows:

ke S!

k¢S ®

t,k —

s

. {hiwAR(Q V)

ht 1,k

3.4. Training

The architecture we propose introduces changes in both
the structure of the hidden state as well as the dynamics
of updates. It doesn’t rely on additional losses and can
thus be used as a drop-in substitute for LSTMs and GRUs.
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For training we consider task-specific losses which range
from classification and video prediction losses to RL losses
depending on the problem.

4. Related Work

Deep Boltzmann Machines: Deep Boltzmann machines
(Salakhutdinov & Hinton, 2009) resemble our motivating in-
tuitions, as they are undirected and thus have both top-down
and bottom-up feedback through an energy function. Addi-
tionally, the model captures a probability distribution over
the hidden states, such that the role of top-down feedback
becomes most important when the bottom-up signal has the
most uncertainty. However, a significant problem in deep
Boltzmann machines, and with undirected graphical models
in general, is that sampling and inference are both difficult.
Sampling generally requires an iterative procedure, which
may converge slowly.

Helmholtz Machine: Like auto-encoders, the Helmholtz
machine (Dayan et al., 1995) contains two separate net-
works: a generative network and a discriminative network,
and the wake-sleep learning algorithm is applied to discover
a latent representation of the data in an unsupervised way.
However, unlike in our proposal, the top-down path only
influences the learning of the bottom-up path, and not its
actual current computation.

Transformers: The Transformer architecture (Vaswani
et al., 2017) eschews the use of a recurrent state in favor of
using attention to pass information between different posi-
tions. It lacks an explicit inductive bias towards a bottom-up
followed by top-down flow, since at the lowest-layers of the
network, the positions in the distant past can only undergo
a small amount of processing before they can influence the
lower levels of processing of later inputs.

Hierarchical Multiscale Recurrent Neural Network:
This paper explored an architecture in which the higher
layer at previous steps is given as additional inputs to an
RNN'’s lower layers (Chung et al., 2016). Additionally the
higher level information is flushed, copied, or updated, us-
ing a sparse gating operation. However a key difference
from our work is that we use attention to determine whether
and what to read from the higher or lower levels, as opposed
to concatenating into the input. Additionally, our approach
uses a modular recurrent state.

Generative Classifiers: These classify by selecting a class
y to maximize p(z|y)p(y). This is a top-down form of clas-
sification, since a key factor is estimating the likelihood of
a given sample x under a generative model p(x|y). Notably,
this purely top-down approach often struggles as learning a
model of p(x|y) is generally much harder and much more
complex than a direct model of p(y|xz) (Ng & Jordan, 2002).

5. Experiments

The main goal of our experiments is to explore the effect
of BRIMs on generalization. In particular, we primarily
focus on tasks where the training and testing distribution
differ systematically, as we believe that the improved top-
down modulation of BRIMs will help the model to adapt
to variations unseen during training. Additionally, we pro-
vide ablations and analysis which explore how the different
components of the BRIMs architecture affect results.

We show that BRIMs improve out-of-distribution general-
ization over sequence length, on sequential MNIST and
CIFAR classification, and moving MNIST generation. We
then show that BRIMs better reason about physical move-
ment in a synthetic bouncing balls dataset. In all of these
tasks, the test distribution differs dramatically from the train-
ing distribution. We also show that BRIMs improves results
on both language modeling and reinforcement learning. As
the data distribution implicitly changes in reinforcement
learning as a result of the policy changing during training,
this provides further evidence that BRIMs improves out-of-
distribution generalization in complex settings.

5.1. Baselines

In our experiments, we consider multiple baselines which
use some aspects of BRIMs, such as stacked recurrent lay-
ers and modularity. We compare our architecture against
various state of the art models (Transformers (Vaswani et al.,
2017), Relational RNNs (Santoro et al., 2018)) while also
providing ablation studies based on LSTM (Hochreiter &
Schmidhuber, 1997) backbone. By outperforming these
baselines, we demonstrate the necessity of the contributions
introduced in the BRIMs architecture. In particular, we try
to disentangle the contributions of attention [A], hierarchy
[H], modularity [M], and bidirectional [B] structure.

LSTM variants: We consider variants of LSTMs based on
different subsets of important properties. In particular, we
experimented with standard LSTMs as well as hierarchical
LSTMs without feedback [H], with feedback [H+B], with
attention [H+A], and with both [H+A+B].

Transformers [H+A]: Self-attention based multi-layer archi-
tecture (Vaswani et al., 2017).

RMC, a relational RNN [A]: Memory based recurrent model
with attention communicating between saved memory and
hidden states (Santoro et al., 2018).

Recurrent Independent Mechanisms (RIMs) [A+M]: Modu-
lar memory based single layered recurrent model with atten-
tion modulated input and communication between modules
(Goyal et al., 2019).

Hierarchical RIMs [H+A+M]: Two layered modular archi-
tecture with attention based communication between the
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Algorithm Properties 19x19 24x24 32x32 Algorithm Properties 16x16 19x19 24x24
LSTM — 54.4 44.0 322 LSTM — 86.8 42.3 25.2
LSTM H 57.0 46.8 332 LSTM H 87.2 43.5 22.9
LSTM H+B 56.5 52.2 42.1 LSTM H+B 83.2 444 25.3
LSTM H+A 56.7 51.5 40.0 LSTM H+A 84.3 47.5 31.0
LSTM H+A+B 59.9 54.6 43.0 LSTM H+A+B 83.2 40.1 20.8

RMC A 49.9 443 31.3 RMC A 89.6 54.2 27.8

RIMs A+M 56.9 514 40.1 Transformers H+A+B 91.2 51.6 22.9
Hierarchical RIMs H+A+M 57.2 54.6 46.8 RIMs A+M 88.9 67.1 38.1
MLD-RIMs H+A+M 56.8 53.1 44.5 Hierarchical RIMs ~ H+A+M 85.4 72.0 50.3
BRIMs (ours) H+A+B+M 60.1 57.7 52.2 MLD-RIMs H+A+M 88.8 69.1 453

Table 1. Performance on Sequential CIFAR generalization: Test
Accuracy % after 100 epochs. Both the proposed and the Baseline
model (LSTM) were trained on 16x16 resolution but evaluated at
different resolutions; results averaged over 3 different trials.

modules in the same layer and between different layers.
Here the flow of information is unidirectional i.e informa-
tion only flows from bottom to top, and hence no top-down
information is being used.

MLD-RIMs, RIMs with Multilayer Dynamics [H+A+M]: The
same as hierarchical RIMs except that the activation of RIMs
on the higher layer is copied from the lower layer instead
of being computed at the higher layer. This more tightly
couples the behavior of the lower and higher layers.

BRIMs [H+A+M+B]: Our model incorporates all these in-
gredients: layered structure, where each layer is composed
of modules, sparingly interacting with the bottleneck of
attention, and allowing top down information flow.

For more detailed description about the baselines, we ask
the reader to refer to section A.1 in Appendix.

5.2. Model Setup

We use a 2-layered setup with each layer consisting of a
set of modules. The proposed architecture has 2 degrees of
freedom: the number of modules in each layer and number
of active modules in each layer. For the supervised loss,
the final state of the recurrent model is passed through a
feed-forward network before making a prediction. For RL
experiments, the concatenation of the state of lower level
modules as well as higher level modules is used to compute
the policy. For video prediction experiments, the state of
the lower level module is fed into the decoder, and used for
generating the image. Unless otherwise indicated we always
(a) learn an embedding for input tokens before feeding it to
the RNNss, (b) use Adam with a learning rate of 0.001 and
momentum of 0.9. We include more experimental results
and the code in the Supplementary Material.

5.3. Sequential MNIST and CIFAR

These tasks involve feeding a recurrent model the pixels of
an image in a scan-line order and producing a classification
label at the end of the sequence. To study the generalization

BRIMs (ours) H+A+B+M 88.6 74.2 514

Table 2. Performance on the Sequential MNIST resolution gen-
eralization: Test Accuracy % after 100 epochs. Both the proposed
and the Baseline model (LSTM) were trained on 14x14 resolu-
tion but evaluated at different resolutions; results averaged over 3
different trials.

capacity of different recurrent models, we train on SMNIST
at a resolution of (14,14) and test on the resolutions (16,16),
(19,19) and (24,24). Similarly, we perform training for
sCIFAR at resolution (16,16) and testing on (19,19), (24,24)
and (32,32). Because these images contain many distracting
and uninformative regions, a model which is better able
to ignore these patterns should generalize better to longer
sequences. Additionally many details in these images are
difficult to understand without having good top-down priors.
These will be most salient when the specific character of
these details changes as, for example, when we increase
the resolution. See Tables 1, 2 for results and appendix
section A.2 for more details.

5.4. Moving MNIST: Video Prediction

We use the Stochastic Moving MNIST (SM-MNIST) dataset
introduced by Denton & Fergus (2018) which consists of
sequences of frames of size 64 x 64, containing one or two
MNIST digits moving and bouncing off the edge of the
frame (walls). Training sequences were generated on the fly
by sampling two different MNIST digits from the training
set (60k total digits). We trained the proposed model on SM-
MNIST by conditioning on 5 frames and training the model
to predict the next 10 frames in the sequence, and compared
it to the SVG-LP model (Denton & Fergus, 2018).

To test out-of-distribution generalization capability, we
trained models on image sequences from the SM-MNIST
dataset containing only digits 0-7, and tested them on se-
quences containing only digits 8 & 9. We compared the
Structural Similarity index (SSIM) and the Mean Squared
Error (MSE) of the best generated sequences from the base-
line SVG-LP model, and those from ours. We followed
the same evaluation protocol as SVG, and the results in
Figure 2 demonstrate that our proposed method performs
consistently better. For details about the experimental setup,
we ask the reader to refer to section A.5 in Appendix.
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- SVG-LP
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Figure 2. Comparison of BRIMs and SVG-LP (Denton & Fergus,
2018) on Stochastic Moving MNIST, evaluated using (a) SSIM
(higher is better) and (b) MSE (lower is better). Models are trained
on digits 0-7 and tested with digits 8-9. The models are conditioned
on 5 time steps, and trained for 10 more time steps. SSIM is
calculated by rolling out the models into future time steps.

5.5. Handling Occlusion in Bouncing Balls

We study the ability of the proposed model to model the
physical reasoning capabilities, on the bouncing balls task, a
standard environment for evaluating physical reasoning ca-
pabilities exhibiting complex non-linear physical dynamics.
We train BRIMs on sequences of 6464 binary images over
51 time-steps that contain four bouncing balls with different
masses corresponding to their radii. The balls are initial-
ized with random initial positions, masses and velocities.
Balls bounce elastically against each other and the image
window. We also test the proposed method in the scenario
when an invisible “curtain” (Van Steenkiste et al., 2018) is
present, which further tests the degree to which the model
correctly understands the underlying dynamics of the scene.
For vizualizations about the predictions from the proposed
model, refer to section A.6 in Appendix.

5.6. Language Modelling

We consider word-level language modeling on the WikiText-
103 dataset which have been used as benchmarks in previous
work (Santoro et al., 2018). Language has an organic hi-
erarchical and recurrent structure which is both noisy and
flexible, making it an interesting and apt task to study for
the proposed model. Table 3 shows Validation and Test set
perplexities for various models. We find that the proposed
method improve over the standard LSTM as well as RMCs.

5.7. Reinforcement Learning

Top-down and bottom-up signals are clearly differentiated in
the case of reinforcement learning (or in active agents, more
generally) in that they lead to different optimal behavior.
Since top-down signals change more slowly, they often

Algorithm Properties  Valid  Test
LSTM — 382 418
RMC* H 362 383

Hierarchical RIMs H+A+M 36.1 38.1
BRIMs (ours) H+A+B+M  35.5 36.8

Table 3. Perplexities on the WikiText-103 dataset. () refers to our
implementation of the model.

Algorithm
= [STM
== RIMs
== BRIMs

Curtain 4 Balls
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o

Figure 3. We study the performance of the proposed model as com-
pared to the LSTM as well as RIMs baseline. We feed the ground
truth for the first 15 time steps, and then we ask the model to
predict the next 35 time steps. During rollout phase, the proposed
model performs better in terms of accurately predicting the dy-
namics of the balls for the 4Balls scenario, as well as for the more
difficult occlusion scenario, as reflected by the lower BCE.

suggest long-term and deliberative planning. On the other
hand, bottom-up signals which are surprising can often
require an immediate reaction. Thus, in selecting actions,
points in which the top-down system dominates may benefit
from activating a system with a long-term plan, whereas
points where the bottom-up information dominates could
benefit from a system which immediately takes action to
resolve an unexpected threat. On the whole, we expect that
dynamically modulating activation based on bottom-up and
top-down signal importance will be especially important
in reinforcement learning. Additionally, in reinforcement
learning the data distribution implicitly changes as the policy
evolves over the course of training, testing the models ability
to correctly handle distribution shift.

To investigate this we use an RL agent trained using Proxi-
mal Policy Optimization (PPO) (Schulman et al., 2017) with
a recurrent network producing the policy. We employ an
LSTM as well as RIMs architecture (Goyal et al., 2019) as
baseline and compare results to the proposed architecture.
This was a simple drop-in replacement and did not require
changing any of the hyperparameters for PPO. We experi-
mented on 10 Atari games (chosen alphabetically) and ran
three independent trials for each game (reporting mean and
standard deviation). We found that simply using BRIMs for
the recurrent policy improves performance (Table 4). We
also found an improvement on Ms. Pacman, which requires
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Environment | LSTM RIMs BRIMs (ours)
Alien 1612 + 44 2152 £+ 81 4102 + 400
Amidar 1000 + 58 1800 + 43 2454 + 100
Assault 4000 + 213 5400 + 312 5700 + 320
Asterix 3090 £ 420 21040 £ 548 30700 £ 3200
Asteroids 1611  + 200 3801 + 89 2000 =+ 300
Atlantis 328M £ 0.20M 35M £ 0.12M 3.9M + 0.05M
BankHeist 1153 £+ 23 1195 + 4 1155 £+ 20
BattleZone 21000 + 232 22000 + 324 25000 + 414
BeamRider 698 =+ 100 5320 £ 300 4000 + 323
MsPacMan 4598 + 100 3920 + 500 5900 + 1000

Table 4. Results on the Atari Reinforcement learning task using
PPO with different recurrent policy networks.

careful planning and is not purely reactive.

6. Analysis and Ablation Studies

We have demonstrated substantially improved results us-
ing BRIMs. However, it is essential to understand which
aspects of the newly proposed model are important for per-
formance. For example, BRIMs does introduce additional
capacity, and thus it is critical to demonstrate that the perfor-
mance improvement is not replicated by increasing capacity
in simpler ways. To this end we conduct ablation studies to
demonstrate the necessity of bidirectional structure, atten-
tion, modularity, and hierarchy.

6.1. Role of Bidirectional Information Flow

We demonstrate that in different architectures, having top
down information flow helps in generalization. Tables 1, 2, 3
demonstrate the effectiveness of using top down connections
in standard LSTMs, attention based LSTMs and hierarchi-
cal modules. We maintain that higher layers are able to
filter out important information from lower layers and thus
conditioning on it provides much more context as to what is
relevant at any time in a sequence. However, the results still
fall short of BRIMs, indicating that this component alone is
not sufficient.

6.2. Consistent Utilization of the Higher Level

We also investigated the nature of the learned bidirectional
flow on sequential CIFAR-10 classification. The lower level
can dynamically choose whether to use information from
input or the higher level. The lower level should query the
higher level only if the latter contains information which
might be relevant for solving the task at hand. We can
analyze the frequency with which the lower level queries
information from the higher level, i.e., whether it exploits
top-down information.

We experimentally verified that almost every example at-
tends to the higher level, yet only a small fraction of steps
attend to the higher level on typical examples. Quantita-
tively, 95.1% of images accessed the higher level at least

five times, while on average only 2.86% of the total attention
(averaged over all modules) was to the higher level.

6.3. Role of Attention

Tables 1, 2, 3, 4 and Figure 2 show the importance of hav-
ing attention, as Transformers, RMC, attention-modulated
LSTMs, RIMs and BRIMs lead to much better performance
and generalization in domains ranging from supervised
learning to reinforcement learning than their non attention
counterparts. This suggests that key-value attention mecha-
nism is better able to extract out important information and
dependency as opposed to standard connections.

6.4. Role of Modularity

Tables 1, 2, 3, 4 indicate that having layers as a composition
of smaller modules with their own independent dynamics
has better performance compared to architectures without
modular decomposition. In particular, we note that RIMs,
its hierarchical variants and BRIMs perform much better
than their LSTM counterparts. This shows that having inde-
pendent dynamics for modules as well as a communication
channel between them are important ingredients for gener-
alization.

6.5. Role of Hierarchy

We consistently found that models with hierarchical struc-
ture perform much better than their shallow counterparts
(Tables 1, 2, 4). This relates to the discussion in Section 6.1
that higher layers are able to abstract and filter out important
information and concepts learned in lower layers.

7. Conclusion

Top-down and bottom-up information are both critical to
robust and accurate perception. How to combine these sig-
nals has been a central topic of focus within not just deep
learning, but also the entire field of cognitive science for
several decades. Our work focuses on the idea that attention
can be used to give models explicit control over the combi-
nation of top-down and bottom-up signals which is both dy-
namic and context dependent. Our simulation experiments
have shown a critical role for network modularity: ensur-
ing that specific top-down signals combine with specific
bottom-up signals. Using these insights we have proposed a
new algorithm, Bidirectional Recurrent Independent Mech-
anisms (BRIMs), which achieves substantial improvements
on sequence-length generalization tasks, language model-
ing, video generation, and reinforcement learning on Atari.
A detailed ablation study gives evidence that combining
top-down and bottom-up signals through attention is the
critical component for achieving these improved results.
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Task Hidden Dimensions Number of RIMs (n;) Number of Active RIMs (1m;)
Sequential MNIST (600, 300) (6,3) (4,2)
Sequential CIFAR (300, 300) (6,6) (4.,4)

Moving MNIST (300, 300) (6,6) (4,4)
Bouncing Balls (300, 300) (5,5) (3,3)
Language Modelling (300, 300) (6,6) (4,4)
Reinforcement Learning (300, 300) (6,6) (4.,4)
Adding (300, 300) (5,5) (3,3)

Table 5. Hyperparameters for experiments. We list the number of hidden units (combined over all RIMs) as well as the number of RIMs
on each layer.

A. Appendix
A.1. Baseline Description

In our experiments, we consider multiple baselines which use some aspects of BRIMs, such as stacked recurrent layers
and modularity. We compare our architecture against various state of the art models (Transformers (Vaswani et al., 2017),
Relational RNNs (Santoro et al., 2018)) while also providing ablation studies based on LSTM (Hochreiter & Schmidhuber,
1997) backbone. By outperforming these baselines, we demonstrate the necessity of the contributions introduced in the
BRIMs architecture. In particular, we try to disentangle the contributions of attention [A], hierarchy [H], modularity [M],
and bidirectional [B] structure.

LSTM variants: We consider variants of LSTMs based on different subsets of important properties. In particular, we
experimented with standard LSTMs as well as hierarchical LSTMs without feedback [H], with feedback [H+B], with
attention [H+A], and with both [H+A+B].

Transformers [H+A]: Self-attention based multi-layer architecture (Vaswani et al., 2017).

RMC, a relational RNN [A]: Memory based recurrent model with attention communicating between saved memory and
hidden states (Santoro et al., 2018).

Recurrent Independent Mechanisms (RIMs) [A+M]: Modular memory based single layered recurrent model with attention
modulated input and communication between modules (Goyal et al., 2019).

Hierarchical RIMs [H+A+M]: Two layered modular architecture with attention based communication between the modules
in the same layer and between different layers. Here the flow of information is unidirectional i.e information only flows
from bottom to top, and hence no top-down information is being used.

MLD-RIMs, RIMs with Multilayer Dynamics [H+A+M]: The same as hierarchical RIMs except that the activation of RIMs
on the higher layer is copied from the lower layer instead of being computed at the higher layer. This more tightly couples
the behavior of the lower and higher layers.

BRIMs [H+A+M+B]: Our proposed model incorporates all these ingredients: layered structure, where each layer is composed
of modules, sparingly interacting with the bottleneck of attention, and allowing top down information flow.

A.2. sMNIST

For the baseline LSTM variants, we perform hyperparameter tuning by considering the dimension of hidden state in each
layer to be chosen from {300,600}. We also experimented with learning rates of 0.001, 0.0007 and 0.0003. For RIMs,
Hierarchical RIMs and MLD-RIMs, we experiment with the same hidden state size ( = sum of sizes of all modules of the
layer) and learning rate. Number of modules are chosen from the set {3,5,6} and the number active at any time is roughly
around half of the total number of modules.

We use an encoder to embed the input pixels to a 300 dimensional vector. We consider the lower hidden state to comprise of
6 modules and the higher state of 3 modules. The modules at lower levels are of 50 dimensions while at higher levels they
are of 100 dimensions. We maintain 4 modules active at lower level and 2 at higher level at any given time.

We train the model using Adam optimizer with a learning rate of 0.0007. We clip the gradients at 1.0 for stability and train
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the model with dropout of 0.5 for 100 epochs. Evaluation is obtained according to best performance on a validation split.

A.3. sCIFAR

For the baseline LSTM variants, we perform hyperparameter tuning by considering the dimension of hidden state in each
layer to be chosen from {300,600}. We also experimented with learning rates of 0.001, 0.0007 and 0.0003. For RIMs,
Hierarchical RIMs and MLD-RIMs, we experiment with the same hidden state size and the same learning rates. We choose
the number of modules from the set {3,5,6} and the number active at any time is roughly around half of the total number of
modules.

We train a model which takes CIFAR images as a sequence of pixels and predicts the class label. We downsample to 16x16
(a sequence length of 256) during training and use nearest-neighbor downsampling.

We provide the model with all of the three colors as inputs on each step we use a separate encoder for each channel of the
RGB image. We maintain the size of each module at both the lower and higher layer to be 50 and the number of modules
in both the layers 6. We restrict the number of activated modules at any time step to be 4 for both the layers. The inputs
received by the model are encoded into a 300 dimensional vector.

We train the model using Adam optimizer with learning rate 0.0007. We further clip the gradients at 1.0 in order to stabilize
training. We train the model with embedding dropout of 0.5 for 100 epochs and use a validation split to obtain the results on
the test set corresponding to best accuracy on validation split.

In Figure 4 we show that if we train normally but make some of the pixels random (uniformly random noise) at test time,
then the model puts more of its attention on the higher level, as opposed to the input. This is evidence that the model learns
to rely more heavily on expectations and prior knowledge when the input sequence is less reliable.
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Figure 4. On sequential CIFAR-10, we evaluate on 32x32 test images and change a certain number of the pixels to random values. We
show the average activation weight (y-axis) on Input (top), Null (middle) and Higher Layer (bottom) plotted against the number of
random pixels (x-axis) (total number of pixels = 1024). We see that as more pixels are set to random values, the model becomes
increasingly reliant on the higher-level information.

A.4. Adding

For all the variants, we perform hyperparameter search for learning rate from the set {0.001, 0.0007, 0.0003}. Apart from
learning rate, we didn’t perform any other kind of hyperparameter search.

In the adding task we consider a stream of numbers as inputs (given as real-values) and then indicate which two numbers
should be added together as a set of two input streams which varies randomly between examples. The length of the input
sequence during testing is longer than during training. This is a simple test of the model’s ability to ignore the numbers
which it is not tasked with adding together. We show that BRIMs provides substantially faster convergence on the adding
task. We also evaluate the model’s performance on adding multiple numbers even when it is trained on adding only two. We
demonstrate that BRIMs generalize better for longer testing sequences as well as when the number of numbers to be added
changes between training and evaluation (Table 6 and Table 7).

For the task we consider a linear encoder that encodes the three input streams into a 300 dimensional vector and a linear
decoder that gives the final output given the final hidden state at the higher layer. We use 5 modules, each comprising of a
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Number of Values \ Random Prediction LSTM  BRIMs (ours)

2 0.500 0.2032 0.0003
3 1.000 0.2678 0.0002
4 1.333 0.3536 0.0002
5 2.500 0.5505 0.0058
10 9.161 3.5709 2.078

Table 6. We train on sequences with either 2 or 4 values to be summed, and on a sequence length of 50. We test on a sequence length 200
with different numbers of values to be summed. This demonstrates that BRIMs improves generalization when jointly varying both the
sequence length and the numbers of values to be summed.

Number of Values \ Random Prediction LSTM  BRIMs (ours)

2 0.500 0.0842 0.0000
3 1.000 0.4601 0.0999
4 1.333 1.352 0.4564
5 2.500 2.738 1.232
10 9.161 17.246 11.90

Table 7. We train on sequences of length 1000 where 2 values must be summed. We test on sequence length 2000 and vary the number of
values to be summed between 2 and 10. We note much better generalization when using BRIMs.

60 dimensional vector, at both the lower and higher layers. We also maintain that 3 modules remain active at any time at
both the lower and higher layers.

The model is trained end to end with a learning rate of 0.001 using Adam Optimizer. We clip the gradients at 0.1 and use
dropout of 0.1. We perform two experiments, outlined below:

e We train the model to add two numbers from 1000 length sequences and evaluate it on adding variable number of
numbers (2 - 10) on 2000 length sequences. (Table 6)

e We train the model to add a mixture of two and four numbers from 50 length sequences and evaluate it on adding
variable number of numbers (2 - 10) on 200 length sequences. (Table 7)

A.5. Moving MNIST

We use the Stochastic Moving MNIST (SM-MNIST) (Denton & Fergus, 2018) dataset which consists of sequences of
frames of size 64 x 64, containing one or two MNIST digits moving and bouncing off the walls. Training sequences
are generated on the fly by sampling two different MNIST digits from the training set (60k total digits) and two distinct
trajectories. Trajectories change randomly every time a digit hits a wall.

We trained the model on sequences only containing digits 0-7, and validate it on sequences with digits 8 and 9. We ran the
proposed algorithm with 2 layers, each with 6 RIMs and 4 active RIMs. We used a batch size of 100, and ran 600 batches
per epoch (60000 samples per epoch). We trained for 300 epochs using Adam as optimizer (Kingma & Ba, 2014) with a
learning rate of 0.002.

A.6. Bouncing Balls

We use the bouncing-ball dataset from (Van Steenkiste et al., 2018). The dataset consists of 50,000 training examples and
10,000 test examples showing ~50 frames of either 4 solid balls bouncing in a confined square geometry, 6-8 balls bouncing
in a confined geometry, or 3 balls bouncing in a confined geometry with a random occluded region. In all cases, the balls
bounce off the wall as well as off one another. We train baselines as well as proposed model for about 100 epochs using
0.0007 as learning rate and using Adam as optimizer (Kingma & Ba, 2014). We use the same architecture for encoder as
well as decoder as in (Van Steenkiste et al., 2018). We train the proposed model as well as the baselines for 100 epochs.
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Figure 5. We show the performance of the proposed model for different values of number of RIMs on each layer, as well as number of
active RIMs. The first 15 frames of ground truth are fed in and then the system is rolled out for the next 35 time steps. The legend format
is: (number of units on first layer, number of total units on second layer, total number of RIMs on first layer, total RIMs on second layer,
activated RIMs on first layer, activated RIMs on second layer). The best result is achieved by using sparse activation on both the higher
and lower layer.

A.7. Language Modelling

Hyperparameters are tuned for the vanilla LSTM, which consist of 1, 2 LSTM layer, 0.3 embedding dropout, no layer norm,
and shared, input/output embedding parameters. We use a hidden state of the size 2048 for the vanilla LSTM. Training was
performed with Adam at learning rate le-3, gradients clipped to 0.1, sequence length 128, and batch size 128. We ran the
proposed algorithm with 6 RIMs on each layer and kept the number of activated RIMs to 4 on each layer, with number of
layers = 2. We have not done any hyper-parameter search for these experiments either for the baseline or for the proposed
model.

A.8. Atari

We used an open-source implementation of PPO from (Kostrikov, 2018) with default parameters. We ran the proposed
algorihtm with 6 RIMs on each layer and kept the number of activated RIMs to 4 on each layer, with number of layers = 2.
We have not done any hyper-parameter search for Atari experiments.



